

Next Generation Flow Batteries

Wei Wang, Zimin Nie, Xiaoliang Wei, Leo Liu, Bin Li, Murugesan Vijayakumar, Ed Thomsen, David Reed, and Vincent Sprenkle

Pacific Northwest National Laboratory

Support from DOE Office of Electricity Delivery & Energy Reliability Energy Storage Program

EESAT/Energy Storage Systems Program Review Portland, OR September 23rd, 2015

Introduction of Redox Flow Battery(RFB) Technology

Proudly Operated by Battelle Since 1965

Applications

- Renewable energy integration
- Improve grid reliability
- Enable smart grid deployment
- Support electrification of the transportation sector

Project Overview

Energy Storage Challenge

Development of cost and performance competitive RFBs for stationary energy storage application.

Project Objective

Identify and develop future RFB systems with potential to reach cost target.

Accomplishments

- Identified and demonstrated a new redox chemistry
- Investigate the Nafion membrane morphology and its impact on VRB performance.
- Developed an organic nonaqueous RFB system and investigated its capacity decay mechanism.
- Development of high-performance catalytic electrode for Zn-I RFB.
- 10 publications, 2 patents applications, 3 patents granted in 2015 (to date)

PNNL Roadmap for Redox Flow Battery Development

Proudly Operated by Battelle Since 1965

A Total Organic Aqueous Redox Flow Battery

Advantage:

- Low-cost redox couple;
- Low-cost supporting electrolyte;
- No resource constraints;
- Less corrosive and toxic.

Voltage of Aqueous Redox Flow Battery

Proudly Operated by Battelle Since 1965

ARFBs	Cell voltage	Current density	Supporting	Membrane	
(anolyte/catholyte)	(V)	(mA/cm ²)	electrolytes	Memorane	
PbSO ₄ /BQDS	1.07	10	H_2SO_4	Nafion 115	
AQDS/Br ₂	0,96	500	H ₂ SO ₄ and HBr	Nafion 117	
AQDS/BQDS	0.76	8	H ₂ SO ₄	Nafion 112	
MV/4-HO-TEMPO	1.25	60	NaCl	AME	

Solubility in water:

MV > 3.0M

4-HO-TEMPO: >2.1M

Excellent Kinetics

Proudly Operated by Battelle Since 1965

Linear sweep voltammograms of MV

Linear sweep voltammograms of **4-OH-TEMPO**

Excellent Kinetics

Proudly Operated by Battelle Since 1965

Levich plots of the limiting current vs the square root of rotation rates for MV(blue) and 4-OH-TEMPO (red)

The plots of kinetic current versus overpotential and the corresponding fitted Tafel plots for **MV** (blue) and **4-OH-TEMPO** (red).

Redox couples	D (×10 ⁻⁶ cm ² s ⁻¹)	k (×10 ⁻⁴ cm s ⁻¹)		
MV	25.7	2.8		
4-HO-TEMPO	29.5	2.6		
V ^{4+/5+}	5.7	0.02		
AQDS/AQDSH ₂	3.8	72		

Flow Cell Performance - Low Concentration Pacific Nor

fic Northwest

Proudly Operated by Battelle Since 1965

Representative charge and discharge profiles of the MV/4-HO-TEMPO ARFB (0.1M) at the cycling rates from 20 to 100 mA/cm².

Plots of coulombic efficiency, voltage efficiency, and energy efficiency versus current density of the cell.

Flow Cell Performance - Low Concentration Pacific Nor

Proudly Operated by Battelle Since 1965

Capacity and coulombic efficiency vs cycling numbers of the cell at 40 mA/cm². Conditions: anolyte, 0.1 M MV in 1.0 M NaCl aqueous solution; catholyte, 0.1 M 4-HO-TEMPO in 1.0 M NaCl aqueous solution; flow rate, 20 mL/min; AMV anion membrane. No remixing.

Flow Cell Performance - High Concentration Continue North

Proudly Operated by Battelle Since 1965

Representative charge and discharge profiles of the MV/4-HO-TEMPO ARFB (0.5 M) at the cycling rates from 20 to 100 mA/cm².

Plots of coulombic efficiency, voltage efficiency, and energy efficiency versus current density of the cell.

Flow Cell Performance - High Concentration Acific Nor

Proudly Operated by Battelle Since 1965

Capacity and coulombic efficiency vs cycling numbers of the cell at 40 mA/cm². Conditions: anolyte, 0.5 M MV in 1.5 M NaCl aqueous solution; catholyte, 0.5 M 4-HO-TEMPO in 1.5 M NaCl aqueous solution; flow rate, 20 mL/min; AMV anion membrane. No remixing.

Summary of the organic aqueous RFB

- ▶ A new MV and 4-HO-TEMPO based organic aqueous RFB is demonstrated with stable cycling performance at the current density of 40mA/cm² with theoretical voltage of ~1.25V;
- Preliminary cost analysis indicated a significant cost reduction compared with VRBs, mainly due to the low-cost redox active materials.

Other developments in the field of RFB

- Nafion membrane microstructure investigation;
- Nonaqueous RFBs development;
- High-performance catalytic electrode.

Correlating Nafion Membrane Microstructure with VRB Performance

Conductivity

Thickness

EW

Proudly Operated by Battelle Since 1965

Selectivity

Membrane

		(µm)	(mS cm ⁻¹)	resistance (mΩ cm²)	Coefficient of VO ²⁺ (*10 ⁻⁶ cm ² min ⁻¹)	(*10 ⁻⁷ mol cm ⁻² min ⁻¹)	Between H ⁺ and VO ²⁺
NDM220	100 0	52	70.6	77.2	1.20	2.31	58.8
NDM223	120 0	53	44.8	102.4	0.46	0.87	97.4
NDM221-1	150	47	18.8	222.8	95	- N	116.8

Area

Diffusion

VO²⁺ ion flux

Total Organic Nonaqueous RFB

Proudly Operated by Battelle Since 1965

Conclusions

Proudly Operated by Battelle Since 1965

- A total organic aqueous redox flow battery system has been designed and demonstrated, which has great potential to be developed as next-generation low-cost redox flow battery system for stationary energy storage.
- ▶ Nafion membrane morphology and its impact on VRB performance were investigate.
- A nonaqueous RFB chemistry was developed, and its capacity decay mechanism was researched.

Future work

- Continuous optimization of the MV-TEMPO system.
 - Improving the current density through electrolyte optimization;
 - Identify and develop low resistance membrane;
 - Investigate and mitigate the capacity decay mechanism.

Acknowledgements

- Support from US DOE Office of Electricity Delivery & Energy Reliability Dr. Imre Gyuk, Energy Storage Program Manager
- Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830.
- External collaborators
 - Sandia National Laboratory
 - Chemours (Formerly Dupont)